Ventral pallidal projections to mediodorsal thalamus and ventral tegmental area play distinct roles in outcome-specific Pavlovian-instrumental transfer.

نویسندگان

  • Beatrice K Leung
  • Bernard W Balleine
چکیده

Outcome-specific Pavlovian-instrumental transfer (PIT) demonstrates the way that reward-related cues influence choice between instrumental actions. The nucleus accumbens shell (NAc-S) contributes critically to this effect, particularly through its output to the rostral medial ventral pallidum (VP-m). Using rats, we investigated in two experiments the role in the PIT effect of the two major outputs of this VP-m region innervated by the NAc-S, the mediodorsal thalamus (MD) and the ventral tegmental area (VTA). First, two retrograde tracers were injected into the MD and VTA to compare the neuronal activity of the two populations of projection neurons in the VP-m during PIT relative to controls. Second, the functional role of the connection between the VP-m and the MD or VTA was assessed using asymmetrical pharmacological manipulations before a PIT test. It was found that, whereas neurons in the VP-m projecting to the MD showed significantly more neuronal activation during PIT than those projecting to the VTA, neuronal activation of these latter neurons correlated with the size of the PIT effect. Disconnection of the two pathways during PIT also revealed different deficits in performance: disrupting the VP-m to MD pathway removed the response biasing effects of reward-related cues, whereas disrupting the VP-m to VTA pathway preserved the response bias but altered the overall rate of responding. The current results therefore suggest that the VP-m exerts distinct effects on the VTA and MD and that these latter structures mediate the motivational and cognitive components of specific PIT, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inactivation of the ventral tegmental area abolished the general excitatory influence of Pavlovian cues on instrumental performance.

Pavlovian stimuli can markedly elevate instrumental responding, an effect known as Pavlovian-instrumental transfer (PIT). As the role of the ventral tegmental area (VTA) in PIT is yet unknown, we examined the effects of transient VTA inactivation by direct microinjections of a mixture of the GABA(A) and GABA(B) receptor agonists, muscimol and baclofen. Results reveal that PIT, i.e., the increas...

متن کامل

The ventral pallidal projection to the mediodorsal thalamus: a study with fluorescent retrograde tracers and immunohistofluorescence.

We have examined rat basal forebrain projections to the mediodorsal thalamic nucleus (MD) by making injections of retrogradely transported fluorescent tracers into the MD. Additionally, in some animals, we also stained sections for glutamate decarboxylase (GAD) by the indirect fluorescent antibody technique. Our results demonstrate that the following basal forebrain areas project to the MD: lat...

متن کامل

Ventral Tegmental Area Microinjected-SKF38393 Increases Regular Chow Intake in 18 Hours Food Deprived Rats

Ventral tegmental area (VTA) dopamine neurons play an important role in reward mechanisms of food intake, and VTA dopamine receptors exist on the terminal of glutamatergic and GABAergic neurons and regulate GABA and glutamate release. To our knowledge, there is no evidence to show that VTA D1 dopamine receptors play a role in regular chow intake. In this paper, the effect of SKF38393, a D1 rece...

متن کامل

Gating of hippocampal-evoked activity in prefrontal cortical neurons by inputs from the mediodorsal thalamus and ventral tegmental area.

Projections from the hippocampus, the mediodorsal thalamus (MD), and the ventral tegmental area (VTA) form interconnected neural circuits that converge in the prefrontal cortex (PFC) to participate in the regulation of executive functions. The present study assessed the roles that the MD and VTA play in regulating the hippocampal-PFC pathway using extracellular single-unit recordings in urethan...

متن کامل

Reward-guided learning beyond dopamine in the nucleus accumbens: the integrative functions of cortico-basal ganglia networks.

Here we challenge the view that reward-guided learning is solely controlled by the mesoaccumbens pathway arising from dopaminergic neurons in the ventral tegmental area and projecting to the nucleus accumbens. This widely accepted view assumes that reward is a monolithic concept, but recent work has suggested otherwise. It now appears that, in reward-guided learning, the functions of ventral an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 12  شماره 

صفحات  -

تاریخ انتشار 2015